If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+24n+24=0
a = 1; b = 24; c = +24;
Δ = b2-4ac
Δ = 242-4·1·24
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{30}}{2*1}=\frac{-24-4\sqrt{30}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{30}}{2*1}=\frac{-24+4\sqrt{30}}{2} $
| -10=d+2 | | 8(x-1)=-(-8.4x+0.1)+10 | | -4(4k-3)=-7k-24 | | 8(x-1)=-(8.4x+0.1)+10 | | 10=-7+h | | (2n2−5n−6)+(−n2−3n+11)=(2 | | -14.3+2x=-x+4.9 | | 8-7/2m=(-13) | | 3x+2x=64 | | 1-6n=-7-2n | | -4(4a-6)=-8(a+7) | | 7m+4=525m | | -12x+47x=-5(2x-18) | | u+37=48 | | -5-16q=-17q-8 | | 3-4r-2=7-2r | | x=83/9102 | | 7x=84-6x | | 3n+12.4=49 | | y-38=10 | | B=1.5c | | -10+9g-11g=4g+14 | | 6+4(m+4)=2(1+m) | | -23j+-31j+41j+21=-18 | | 2x+3x+5x=500 | | -2y+2=-7y+177 | | 33.3+8x=100 | | -5(x-4)=-x-20 | | 36+2x=5(8x-8) | | 4y+1=2y+15 | | 6v-3=7+8v | | .33+8x=1 |